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Formally exact theories of tagged particle motion in liquids are developed, 
based upon kinetic theory for hard spheres and mode coupling for smooth 
potentials. It is shown that the resulting equations are tractable in the long time 
and Brownian limits. The coefficient of the long time tail of the velocity 
correlation function is seen to differ from its low-density form by only the 
replacement of the low-density viscosity and diffusion constant by the true 
viscosity and diffusion constant. In the Brownian limit, the slip Stokes-Einstein 
law is obtained, with the true viscosity. The relation to other work is discussed. 

KEY WORDS: Kinetic theory; mode coupling; long time tails; Brownian 
limits; Stokes-Einstein law. 

1. INTRODUCTION 

Consider  the motion of  a tagged part icle  through a hard-sphere fluid with 
mean free path l; the tagged-fluid and f luid-f luid  collision radii  are a l and a, 
respectively. I f  the fluid is a dilute gas, and if a s ~ l, the mot ion is described 
by the Loren tz -Bo l t zmann  equation. (1'2) 

This equation,  however,  fails either if the fluid is made  denser, so that  a 
becomes comparab le  to l, or else if the fluid remains a dilute gas but the 
tagged part icle  is increased in size so that  a I ~ l or a I ~ l. In the second 
instance there is very good evidence that  the required kinetic equation is the 
repeated ring approximat ion  ( R R A )  (3-6), provided that  the tagged part icle is 
sufficiently massive. This equation correct ly  yields the Stokes-Eins te in  
relation for the tagged part icle  in the Brownian part icle  limit, (7,s~ with the 
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transport coefficients of the fluid given by their low-density Boltzmann 
values. Furthermore, this equation predicts that the velocity correlation 
function (VCF) of the tagged particle exhibits a positive asymptotic t -3/2 
long time tail in three dimensions ~176 the coefficient again involving the 
Boltzmann values of transport coefficients. The presence of such a long time 
tail in the VCF had previously been observed in computer simulations. "1'12) 

The RRA equation assumes that the fluid far away from the tagged 
particle obeys the linearized Boltzmann equation. As the fluid is made 
denser, so that the condition a/ l  ,~ 1 no longer holds true, the Boltzmann 
equation fails to give an adequate description of its behavior and the RRA 
equation for tagged particle motion also fails. Recently in papers published 
first by Sung and Dahler ~13a) and later by ourselves ~13b) (this paper 
henceforth to be called I), Mori's generalized Langevin equation ~14) for a 
system of hard, specularly reflecting spheres was used to write down a 
formally exact kinetic equation for the tagged particle's motion. An approx- 
imate kinetic theory was then obtained by dropping the "memory function" 
in the exact equation. The resulting equation had the form of an RRA 
equation, but contained in it a lot of information about the equilibrium static 
structure of the fluid particles around the tagged particle. Then both Sung 
and Dahler and ourselves showed that the equation yielded the Stokes- 
Einstein relationship in the Brownian particle limit, but this time the fluid 
transport coefficients being given by their Enskog values, ca'z) We note, 
though, that our method of analysis in this limit differed considerably from 
that used by Sung and Dahler. These differences are discussed briefly in a 
note added in proof to I. We further showed ~13b) that the equation predicted 
an asymptotic long time tail for the VCF in agreement with the very careful 
"ring" calculation of Dorfman and Cohen, ~ again with the transport coef- 
ficients taking on their Enskog values. It was concluded that this equation, 
which we called an Enskog repeated ring approximation (ERRA) (and called 
the two-fluid mean field approximation, or MFA, by Sung and Dahler), 
required that the fluid far away from the tagged particle obeyed the 
linearized modified Enskog equation. 3 Although the modified Enskog 
equation seems to work remarkably well over a wide range of fluid densities, 
it does fail at liquid densities. Thus the ERRA is a theory for tagged particle 
motion in a moderately dense gas, but cannot be expected to apply to 
diffusion in a liquid. In order to describe this, one must go beyond the 
ERRA and retain the memory term in the true kinetic equation. Of course, in 
order to have any hope of solving such an equation for a tagged particle of 
arbitrary mass and size, this memory function must be approximated in 
some way. It is possible, though, to make some progress with the exact 

3 This has been derived by many authors, including those listed in Ref. 16. 
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kinetic equation in some limiting cases. In this paper we consider the long 
time behavior of the VCF and also the Brownian particle limit. These limits 
provide tests that may be applied to approximate, high density theories in 
order to check their possible validity. 

Much attention has already been given to both of these limiting cases. 
Mode coupling calculations upon the long time tail of  the VCF have been 
made by Ernst et al. ~1~) and by several others. ~1~) Their results involved the 
true fluid transport coefficients, and reduced to the RRA (or ERRA) results 
if the transport coefficients were given their Boltzmann (or Enskog) values. 
Pomeau and Resibois (19) also obtained a long time tail involving full 
transport coefficients on the basis of kinetic theory. More recently a very 
thorough analysis of the hard sphere fluid has been given by Van Beijeren 
and Ernst, ~2~ which confirmed the previous mode coupling results. These 
results also show excellent agreement with computer simulations. (~1'~) It 
would therefore seem that the question of the long time behavior of the VCF 
has been settled. All that we hope to do in this paper is to show how this 
well-known result may be obtained very simply both for hard-sphere systems 
and also for systems in which the particles interact through short-ranged, 
continuous and central potentials, but without having to make the 
assumptions commonly made in mode-coupling theories. 

The second problem, that of a molecular theory of Brownian motion 
and the Stokes-Einstein relationship, has also been considered by many 
workers. Keyes and Oppenheim C21) used mode-coupling methods to obtain 
the correct function form of the Stokes-Einstein relation, but they obtained 
an incorrect value for the constant of proportionality (57~ instead of either 4n 
or 670. Masters and Madden ~22) later showed how the correct form of the 
Stokes-Einstein relation could be obtained by avoiding the Gaussian approx- 
imation commonly made in mode-coupling calculations, which was shown to 
allow fluid to get inside the Brownian particle. Several approximations were 
still made in that calculation, however, about how the fluid behaved nearby 
the Brownian particle. In this paper we attempt to analyze the problem more 
deeply, both for hard-sphere systems and also for a system with short-range, 
continuous potentials of interaction, hopefully giving a more fundamental 
derivation of the Stokes-Einstein relationship, involving the true shear 
viscosity, in both cases. 

2. THE LONG-TIME TAIL AND THE STOKES-EINSTEIN 
BEHAVIOR FOR A HARD-SPHERE SYSTEM 

A detailed account of the derivation of the exact hard-sphere kinetic 
equation is given in I, so we shall give only a very brief recap of the methods 
used here. 
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We introduced the variables A(i) and B(12), defined by 

A(i)=~(Vl--Vl)  (la) 

and 

B(]2) = a(~-l-Vl)I~ -~ a(fq2--rli)cS(~2IVi)--pG(12)Oo(2) I , [~,a[>al 
i>1 

(lb) 

where the barred variables are field variables and the unbarred dynamical 
variables. The Maxwellian velocity distribution function for particle j is 
given by O0(j), P is the number density of the fluid, and G(12 -.. R) is the R- 
body distribution function for fluid particles around the tagged particle. 
Since any average involving B will vanish if particles overlap, the restriction, 
]r121 > a l ,  is needed if the average, (BB) -~, required in the Mori O4) 
approach we will use, is to exist. This restriction involves no loss of infor- 
mation, since the hard spheres cannot overlap in reality. 

We then applied Mori's generalized Langevin equation (14) to these 
variables for all possible values of the field variables, and thereby obtained 
two coupled equations for two functions denoted by @(1) and 0(12). The 
Laplace transform of the VCF, C(z), is then given by 

C(z) = f a i   0(1)Vl �9 (2) 

where d l -  &71. We later on use the notation d2 - d~ 2 dr2, and so on. The 
coupled equations for �9 and 0 were given by 

z@(1) -- pG(al) f d2 00(2) T+(12) @(1) --pG(al) f d2 00(2) T+(12) 0(12) 

_ pZ f d2 d3 00(2) O0(3)(G(123) - G(12) G(13)) T+(13) 0(12) = v 1 (3a) 

and for Irl21 ~ al, 

zG(12) 0(12) + zpS d3 O0(3)[G(123) - G(12) G(13)] 0(13) 

- G(12)[Vl" V1 +v2" V2] 0 (12) -  G(al) T+(12) 0(12) 

- p  f d3 O0(3)[G(123) - G(12) G(13)] T+(12) 0(13) 
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--p .( d3 00(3) G(123)[T+(13) + T+(23)(1 + Pz3)] 0(12) 

- - p f  d3 ~0(3)[G(123)-  G(12) G(13)][v,. V~ + v~. V3] 0(13) 

d3 d4 00(3) O0(4)[G(1234) - G(12) G(134)] T+ (34) 0(13) 

_p2f d3d40o(3)Oo(4)[G(1234)- G(la4) G(134) ] -j T+(14) 0(13) 

1 
-- - - .  0(1'3)*M(1'3; 12) = O(al) T+(12) ~(1) (3b) 

P 

where all the variables are field variables and we have dropped the overbars 
for convenience. In these equations G(al) is the value of the radial 
distribution function at contact for fluid around the tagged particle, P23 is a 
permutation operator that exchanges indices 2 and 3, T+(/j) and T+ (/j) are 
binary collision operators, ~z3) and M(l '3;  12) is the memory function, 
defined by 

M(l '3 ;  12) = ({if+ [z -- QiS+]-IQiS+B(I'3)} B(12)) (4) 

where Q is the Mori projection operator that projects a dynamical variable 
orthogonal to the variables A(1) and B(12), and i J i s  the pseudo-Liouville 
operator that propagates a variable either forward (+) or backwards ( - )  in 
time, and is given by 

i f i  = v vl .  v, • G ( u )  (5) 
i = l  i ~ l  j = l  

i ~ j  

Finally the star in Eq. (3b) means integrate over all value of v~ and v 3, and 
all values of r 3 such that I r3 -  r~l ~ a~. 

Equations (3a) and (3b) are formally exact kinetic equations. If they 
could be solved, the exact VCF could be obtained from Eq. (2). In I we 
made the approximation of dropping the memory term in Eq. (3b) which is 
appropriate if we restrict ourselves to studying diffusion in a moderately 
dense gas. As we wish to study diffusion in fluids of arbitrary density in this 
paper, we must retain this term as it becomes important at liquid densities. 

We shall now consider the long time behavior of the VCF, which may 
be obtained from the form of C(z) for small z. We proceed by using the 
methods described in I. Firstly, we rewrite Eq. (3b) in the form 

0(12) =RR(12)  G(a 0 T+(12) ~(1), [r,z I >/a, (6a) 

822/36/3-4-8 
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where RR(12) is the operator such that the left-hand side of Eq. (3b) is given 
by RR-1(12)0(12). At this point, we must mention some hard-sphere 
arcana. Owing to our use of T in the pseudo-streaming operator, 0 is nonzero 
and physically meaningless for 1r12 [ < a 1. This presents no difficulty so long 
as we work in real space, since we only need 0 in the physically relevant 
regime, Ir121>/a1. In the tail calculation, however, we Fourier-transform 
some quantities, which should then have their correct value, zero, for 

/ N  

Ir121 < a  1. We thus introduce the operator, RR, which has the required 
properties, via the relation 

/ N  

W(12) RR -10(12)  = RR -~ (W(12) 0(12)) (6b) 

where 

1, I r l21)a ,  
W(r12)-~O, Ir12 { < a l  

The transformation from RR to RR is the reverse of a procedure used by (7) 
van Beijern and Dorfman. They began using ~s  and thus had functions 
which vanished for Ir121 < a 1, and, by replacing the analog of 0 with WO, 
obtained functions nonzero and unphysical inside the overlapping region, 
governed with operators containing ]Ws. 

Use of this operator allows us to define the problem over all space. It is 
/ N  

easy to obtain RR-1  by combining Eqs. (3b), (a), and (6b). Some of the 
T(12)'s in Eq. (3b) are converted to T(12)'s. (13) One might also note that 
G(12...) in RR -1 can be regarded as having been replaced by G(12...) in 
,A ,  l R R -  , where 6 ~ is not zero, but has some smooth continuation for Ir121 < a 1, 

and thus presents no obstacles to inversion. We will leave this latter point 
implicit in the following. 

Proceeding, we note T0=  TWO, so combination of Eqs. (6) and (3a) 
yields 

z ~ ( 1 ) - p G ( a , )  d2 0o(2) r+(12) 4(1) 

- p G 2 ( a l )  62 ~0(2) 5~+(12)RR(12) T+(12) 4(1) 

- P2G(al) Jl  d2 d3 00(2) Oo(3)(G(123) 

/ x ,  

- G ( 1 2 )  G(13) )T+(13)RR(12)T+(12)dO(1)=v  I (V) 
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We now follow Van Beijeren (24) and make a frequency expansion of ~(1) 
/ x ,  

and of RR(12). Thus we write 

�9 (1) = ~(~ + ~)(1)(1) -t- " ' "  (8a) 

and 
/ ' x  / x  / ~  

RR(12) = RR (~ + RR (1)(12) (8b) 

where the superscript 0 indicates the z = 0 limit of the quantity, and the 
superscript 1 indicates the first-order correction. Thus we expect that in three 
dimensions ~m(1)ocz  1/2. Substitution of Eqs. (8a) and (8b) into Eq. (7) 
yields the two equations 

-pG(al) f d2 Oo(2) T+(12) qr176 -pG2(al)f d2 Oo(2) T+ (12) RZ'R(~ 

• r+(12) ~(~ -pZG(aa) f d2 d3 Oo(2) Oo(3)(G(123) - G(12) G(13)) 

• 5T+(13) RR(~ T+(12) ~(~ = vl (9a) 

and 

-pG(al) f d2 00(2) T+ (12) q)(l'(1) -pG2(a,)/d2 00(2) :T+ (12) 

X RR(~ T+(12) ~(~)(1) --p2G(a~)f d2 d3 00(2) 00(3) 

(G(123) - a(]2) G(13)) f+(13) R'~(~ T+(12) 0~'(1) 

= pG2(a,)f d2 00(2) iT+ (12) RR (1'(12) T+ (12) e(~ 

F 
+p2G(a~)) d2 d3 00(2) Oo(3)(G(123) - G(12) G(13)) 

• :F+(13)RR(1)(12) T+(12) ~(~ (9b) 

where we have ignored terms that yield contributions of O(z) to ~(1)(1) in 
Eq. (9b). We now take the scalar products of Eq. (ga) and (gb) with 
Oo(1)~(1)(1) and Oo(1)q)(~ respectively. After integrating both the 
resulting equations over v 1 and comparing the results, we obtain the equality 

(v, .  ~(~)(1))=pG(al)(~(~ [a(a 0 T+(12) 

+p(6(123) -- G(12) G(13)) T+(13)] R~'R("(12) T+(12) ~(~ (10) 
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where ( . . . )  means multiply what is inside the angled brackets by the 
Maxwellian velocity distribution functions of all the particles involved and 
then integrate over all the coordinates of those particles. In order to obtain 
this result we have used the fact that the operators on the left-hand side of 
Eqs. (9a) and (9b) are symmetric. The left-hand side of Eq. (10) clearly 
directly gives the small z form of C(z) and hence the long time tail of the 
VCF. It therefore remains to analyze the rather complex term on the right- 
hand side of that equation. To do this, we introduce the simpler operator, 
/~(12), defined by 

/~-1(12)= lira RR-1(12)  (11) 
I r12[ ~ c ~  

We then write 

/ x .  

RR -1(12) =/~ - ' (12)  -- ,,q(12) (12) 

where the operator ~q(12) contains all the complicated behavior that occurs 
in the vicinity of the tagged particle. As in I, we then have the operator 
identity, 

A A ~ A 

RR~ = 11 + RR(~ S(~176 RR(~ + 1] 

+ higher-order terms in z (13) 

The superscripts 0 and 1 on the operators aft(12) and ~q(12) have the same 
meaning as given after Eq. (8b). Also, again as in I, the operators /~(12), 
S(12), etc. are defined for all lrl/]. In order to obtain Eq. (13) we used the 
fact that terms involving ~q(1)(12) are of higher order in z than the term 
written out. This is not immediately obvious, for it might be though that the 
memory function, M( l ' 3 ;  12) in Eq.(3b), could give a contribution to 
Su)(12) that could in turn contribute to the z 1/2 term in O(1). Although we 
shall not give a detailed proof that these terms do not contribute, we sketch 
out an argument in Appendix A which supports this contention. 

Furthermore, as in I, one can show that terms involving ~ u ) ~ 0 ) / ~ u )  are of 
higher order in z, by using the fact that the Fourier transform of S [i.e., 
Sk,k2; see Eq. (16)] contains no part proportional to 6(k I -k2) .  

If we accept Eq. (13), we have reduced the problem of analyzing the 

complicated operator RR tl) (12) to that of analyzing the considerably simpler 
operator/~~ The action of the operator /~- ' (12)  upon a function Z(12) 
is given by 
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/ ~ - ~ ( 1 2 ) 2 ' ( 1 2 )  = zz (12 )  + pz f d3 0 0 ( 3 )  h (23)  2 '(13) 

- Iv 1 �9 V 1 --~ v 2 �9 V2] 2'(12) -pG(a~) ~ d3 0 0 ( 3 )  T + ( 1 3 ) Z ( 1 3 )  

-pg(a) f d3 00(3) T+(23)(I + P23)Z(12) 

+ pg(a)f d3 O0(3)(V~ W(23) �9 v~)2'(13) 

--pf d3 00(3) h(23)v~ �9 V~2'(13) 

f d3 d4 00(3) 00(4) h(23) T+ (14) ;((13) ~ p 2 G ( a ~ )  

-/~(12) 2'(12) (14) 

where g ( 2 3 ) -  = g(r23), the pure fluid radial distribution function, and 
h ( 2 3 ) - - g ( 2 3 ) - 1 .  The function W(23) is unity unless particles 2 and 3 
overlap, whereupon it is zero, and g(a) is the value of the fluid radial 
distribution function at contact. Lastly the operator/~(12) is given by 

lim 2'(1'3)*M(1'3; 12) (15) K(12)2'(12) = l/p I,,21-~o~ 

For large values of Ir121, it is clear that the decay of fluctuations of the fluid 
variables are uncorrelated with the motion and position of the tagged 
particle. Thus the Mori projection operator, Q, in the memory function, will, 
in this limit, project all fluid variables orthogonal to the variable 
(Zi>I ~(~ 2 --ri)3(~ 2 - - v i ) -  O0(2)p), for all values of r z and v 2, and it will 
project all tagged particle variables orthogonal to the variable 
3(~ 1 - v l ) ~ ( f ~ -  rl), for all ~ and f~. Thus the operator/~-~(12) says that 
for large I r~21, functions of the fluid variables or of the tagged particle 
variables obey the true equations of motion for the pure fluid or for the 
tagged particle, respectively. 

In order to further analyze /~(1)(12), we follow I, and introduce the 
Fourier transform of an operator, 0(12), defined by 

0kl, k2(12) = f drl2 eik'' r12 0(12) e ik2" r,2 (16) 

where the integration goes over all values of r~2. The operator /~(12) is 
diagonal in this representation, that is to say, in three dimensions, 

/~ki,k2(12) = (2:r) 3 3(k~ + k2) Rk2(12) (17) 
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We thus have the result, using Eqs. (10), (13), (16), and (17), that 

~(t)(1)) = pG(a,)(Zrr) -3 f dk(~(~ (v,. 

X [G(al) T+(12) + (G(123) - G(12) G(13)) T+(13)] 

X [1 + R~(~ S(~ e - 'k '  r12/~(1)(12) elk" r'2 

X [S(~176 1] T+(12)(I)(~ (18) 

^(D 
It therefore remains to analyze R k (12). This operator contains contributions 
both from the first two terms of Eq. (14) and also from the z-dependent 
memory function,/~(1)(12). In Appendix A we sketch out an argument that 
shows that f-(1)(12) only gives rise to contributions of higher order in z than 
z 1/: in ~(1)(1). For our purposes, therefore, we may replace /~(12) by 
/~(~ in Eq. (14) and also in the operator /~(1)(12). We now expand 
/~(1)(12) in terms of the eigenfunctions and eigenvalues of the operator 
/~(~ As discussed by Dorfman and Cohen, (~5) the long time tail arises 
solely from the small Ikl portion of the k integral in Eq. (18), and also comes 
only from the hydrodynamic modes. 

In this case the only mode that contributes is the product of a fluid 
shear mode and the tagged particle's diffusive mode. If we denote this eigen- 
function by ek(12), we have 

Ok(12 ) = (tim)l/2(1 --/~]~)*v 2 + O(k) (19a) 

and 

(Ek(12) �9 Ek(12)) 

z + k2(D + rffpm) + O(k 4) k2(D + tffpm) + O(k 4) (19b) 

where D is the full diffusion constant for the tagged particle, rl is the full 
shear viscosity of the fluid, m is the mass of a fluid molecule, and 
f l= (kBT)  -~, where k 8 is Boltzmann's constant and T the absolute 
temperature. We thus obtain the result 

(v~-~(1)(1)) = pG(al) ( dk f l (k)  f2(k)(ek(12) �9 /~(kl)(12)ek(12)), 
9(2rC) 3 J 

Ikl<kc (20) 

where kc is a cutoff wave vector, on the order of an inverse fluid correlation 
length. The functions f l (k  ) andf2(k ) are given by 

f~(k) = (~{~ T+(12) + (G(123) -- G(12) G(13)) T+(13)] 

X (1 + RR(~ S(~ e - 'k '  r (21a) 
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and 

f2(k) = (vz" e ik''12(1 + S(~176 T+(12) ~(~ (21b) 

As in I, only the zero-k  limits off , (k)  andf2(k) contribute to the long time 
tail. We then obtain the long time tail of the VCF by inverse Laplace 
transforming Eq. (20), which leads to 

lim C(t ) -  4~f~(0)f2(0 ) �9 + D  t (22) 
t ~  9(270 3 - - ~  

where C(t) is the inverse Laplace transform of C(z), that is, the time- 
dependent VCF. We also have the results 

L(o) 
G(aO -A(O) 

1 3k~ r (23) 
= pG(al) m 

where we have used Eq. (9a) and the symmetry of the operator on the left- 
hand side of that equation. We further used the result, derived in the 
Appendix B 

v 3 , (3~r(1'3; 12) - /~(1 '3 ;  12 ) )=0  (24) 

the part of 57/confined to the boundary layer, ~r _ K, enters S. More details 
of the procedures used to get Eq. (23) are given in I. We therefore have the 
final result in three dimensions that 

lim C(t)= (k B T/m)[~(~l/pm + D)t]-3/2(1/4p) (25) 
t --* O0 

- - a  result in full agreement with the previous mode-coupling results ~17'~8) 
and that of the analysis of Van Beijeren and Ernst. (2~ As we said in the 
Introduction, all that we have attempted to do here is to give a derivation of 
this well-known result that is both straightforward and also fairly careful. 

Why does the use of a kinetic equation far more complicated than the 
Ring (9'1~ equation result in nothing but replacement of the Boltzmann 
viscosity and diffusion constant by the true viscosity and diffusion constant 
in the coefficient of the tail? Within our formalism, this arises from the 
simplicity of the products, G(al)f~,2(O ). Now, the f ' s  contain complicated 
combinations of operators and ~(0). If, however, in, e.g., f l ,  S ~ can be 
replaced by G(al)T, f l  is trivially obtained from Eq. (9a) upon use of the 
adjoint properties of the T's. In other words, given the cooperative behavior 
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of g0, the operators acting on ~(0~ in f are just the ones appearing in the 
basic equation obeyed by ~(0); this is why our results are so simple. We 
established the good properties of ~0 without the memory function in I, and 
introduction of M does not change f (even if it changes g0) because of 
Eq. (24). 

It is possible to apply the method just discussed to two dimensions, but 
the analysis is more complicated and we prefer not to discuss two 
dimensions here. 

The second problem to be considered is that of the Brownian particle 
limit. In this limit as/~ >> 1, mJm >> 1, where m s is the mass of the tagged 
particle and ~ is of the order of several fluid correlation lengths and also 
~l/pmD >> 1. To solve this problem, it is most convenient to rewrite Eq. (3b) 
as an equation valid for I rs21 > a 1, supplemented by boundary conditions at 
Ir121 = a  1. Then, as in I, we can rewrite the equations to be solved in the 
form 

zC(z)+ mp G(al ) f dl d2 O0(1) O0(2)(Vs W(12). Vz)(V 2 �9 0(12))+p(k~ T/m1) 
ml 

• f d l  d2 O0(1) O0(2)[V1(G(12) - G(a 0 W(12)). 0(12)] = 3ksT/m ~ 

(26a) 

z6(12) 0(12) + zp~ d3 Oo(3)[6(123) - 6(12) 6(13)1 0(13) 

- G(12)v 2 �9 V20(12) - p f d3 00(3) G(123) T+ (23)(1 + P23) 0(12) 

and 

- p f d3 O0(3)[G(12) G(13) V 3 W(13) - G(123) V 3 W] 123)]. v30(13 ) 

- 1/pO(l'3)*M,(l'3; 1 2 ) = 0  Ir121 > al (26b) 

G(al) T+(12)[0(12) + ~(1)] + pf  d3 O0(3)[G(123) - G(12) G(13)I 

X T+(12) 0(13) = 0 (26c) 

where M8(1'3; 12) is the Brownian particle limit of M(1'3; 12). As in I, we 
introduce the microscopic length, ~, of the order of several fluid correlation 
lengths, such that (as/~) ~> 1, and such that for trlzl >~ a s + ~, the effect of the 
disruption upon the fluid's structure and dynamics due to the presence of the 
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Brownian particle is negligible. For Ir~2l/>al+~,  0(12) is given by its 
hydrodynamic form, 0u (12), which may be obtained from the Chap- 
man-Enskog procedure. For Ir~21 < a~ + ~, however, the Chapman-Enskog 
expansion fails owing to the rapid variation of the fluid properties in the 
vicinity of the Brownian particle, and so, in this region 0(12)4:0./(12). 
Unfortunately, Eqs. (26a) and (26c) require knowledge of 0(2) in just this 
region where the form of the function is unknown. In order to circumvent 
this problem we shall use the same stategy described in I, where we reex- 
pressed Eq. (26a) in terms of the far field solution 0./(12) and we used 
Eqs. (26b) and (26c) to obtain boundary conditions upon 0./(12) on a sphere 
of radius a 1 + {. 

Firstly we must investigate the form of 0n(12 ). The equation that is 
satisfies is 

Z04(12 ) q- zpf d3 00(3 ) h(23) 0,~(13) - v 2 �9 Vz0H(12) 

-pg(a) f d3 00(3) T+(23)(1 + Pz3)0./(12) + pg(a)f d3 00(3) V3 W(23) 

�9 v30(13)-l/pO*/(l'3)*M~.oo(l'3;12)=O, [r,2] >~a, + g (27) 

where M~,~o is the large Irl21 limit of MB(I'3; 12). As discussed beneath 
Eq. (15), for large Ir121 the projection operator Q projects a function of fluid 
particle variables orthogonal to the variable {Y~i>~ cS(r 2 - ri) ~5(v 2 - vi) - 
pO0(2)} for all r 2 and v2, and hence gives rise to true transport coefficients 
for the fluid. Furthermore, because we require that z ~  0[(a~ (tim)~/2)-~] in the 
Brownian limit, we may set z = 0  in the memory function M~,oo(l'3; 12), 
because the fluid fluctuations decay on a molecular as opposed to a 
Brownian particle time scale. Henceforth, we shall ignore the z dependence 
of Me,oo(l'3; 12). 

It is now convenient to expand the operators occurring in Eq. (27) in 
powers of the gradient operator. We thus write Eq. (24) in the form 

z0t/(12 ) +pzf d3 00(3) h(23) 0./(13) 

- { [e0(v2) + M0(v )] + [v2 + e,(v2) +  l(V0] �9 v2 

+ [e2(v2) + M2(v2)] :V2V2 + O(V~)} 0tt(12 ) = 0  

where the operators are given by 

(28) 

eo(V~) x(r12, Vz) =pg(a)f d3 00(3) T+(23)(x(r12, v2) + 2'(r12, v3)) (29a) 
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e,(v2) z(r12, v2) = pg(a)f  d3 00(3) r23 IT+ (23) -(V3 W(23). v3) ] z(r12 , %) 
(29b) 

%(%) Z(rl2, v2 ) = pg(a) f d3 0o(3) r23 r23 T+ (23) z(r~2, v3) (29c) 2 

Mo(v2) X(rl2, v2)= 1 f dl '  dBM~,~(l'3; 12)z(r12, v3) (29d) 

M,(v2) z(rx2, v2)= ~- f dl '  d3 rz3MB,oo(l'3; 12)z(r12, v3) (29e) 

and 

M2(v2)z(r,2, v2) = 1/2pf dl '  d3 r23r23 MB,oo(l'3; 12)z(r~2, %) (29f) 

for an arbitrary function x(r12, V2), We may now find the form of 0H(12) by 
projecting it onto the hydrodynamic eigenfunctions of the gradient operator, 
but as pointed out by Van Beijeren and Dorfman ~7) it is much simpler to 
project instead upon the normal forms which are linear combinations of the 
eigenfunctions. Thus we seek a solution for 0n(12 ) of the form 

O~r(12) = ~(rlz ) + (flm)'/2{v2 ~ + Bar(v2)V[} f~(r12) 

+(2)~/~1(./~2~ 3 / .V~l I (3o) 2 ] "~- A/3(1/2) ~T(rl2) 

where In, f~, and fr are functions yet to be determined, the Greek subscripts 
and superscripts indicate Cartesian components, and the functions A(v2) and 
B(v2) are solutions of the equations 

[eo(v0 + Mo(v2)] A(v2)= (1 + 3b~/5)(/3mv~/2 - 5/2)% 

+ Ml(%)~mv22/2 - 3/2) (3 la) 

and 

[eo(%) + Mo(%) ] B,~(v2) = (1 + 2b~/5)(v~v2 ~ - (1/3)v 2 c5~) 

+ MT(v2)v~ (31b) 

where b e = 2npa3g(a)/3. We now substitute Eq. (30) into Eq. (28), multiply 
through in turn by Oo(1)Oo(2), Oo(1)Oo(2)v 2 and Oo(1) 00(2) 
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(/3mv~/2 - 3/2), respectively, and then integrate over v, and %. This leads to 
the coupled equations 

zs(O) f~(r,2 ) + (tim)-'/2Vl~ �9 fv~(r ,2)  = 0 (32a) 

zf~3(r,2) + (tim) -'/2V~ f~(rl:) + (2/3)1/2(flm) -'/2(1 + b e) V~f~(r,,) 

- *l/pm V:f~3(r,z) - i/pmQ1/3 + ~1,) V~V~f~3(r,2) = 0 (32b) 

and 

22 2 
zf~(r'2) + (2/3)~/2q3m)-~/2(1 + bE)V~ " f~(r '2)  - 3 - - ~  V '~( r12)=  0 (32c) 

where r/, r/B, and ~. are the full coefficients of the shear viscosity, bulk 
viscosity, and thermal conductivity, respectively. In order to get these 
equations we have used the following results obtained from the Chapman- 
Enskog procedure: 

av 2 00(2)%.  A(v2) = 0 (33a) 

00(2 )  B(v2) = 0 (33b) 

and 

(flm)f dv 2 0o(2) v~[(v~+ e~(v2) + M~(v2) ) Ba'(v2) 

- (e2Y~(v2) + M~(v2))v2 a] V~V{f~ae(rx2) 

= --(pm)- '  2 ,,~ [~lV,fv (r,2) + (*//3 + r/B ) V~V~fvY~(r~:)] (33c) 

f dr2 0o(2 ) (flmv 2 3 2 2 J [vz~+ e~(v2) + M~(vz)] A'(%) 

3 = (33d) 
pk~ 

Lastly, the quantity denoted by s(0) in Eq. (32a) is the zero-k  limit of the 
fluid structure factor, s(k). It is given by 

s(0) = 1 + p f  dr3h(23 ) 

Equations (32a-c) are exactly the same equations obtained in I, except 
that here we have the full fluid transport coefficients instead of the Enskog 
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values. As discussed in I, by means of a change of variables, these equations 
can be made to be identical to the usual linearized hydrodynamic equations. 

We now must return to the problem of reexpressing Eq. (26a) in terms 
of 0n(12), and also to the problem of obtaining boundary conditions upon 
the functions f , , fv ,  and fT" To do this we consider the conservation 
equations. As in I, we multiply Eq.(26b) though by O0(1)O0(2), 
Oo(1) 00(2)% and O0(1) Oo(2)(flmv]/2- 3/2), respectively, and integrate 
over v 1 and v 2. We then get the following equations, for Irma1 > al :  

zG(12)((0.(12))) + zp f dr3(G(123 ) - G(12) G(13))((0.(13))) 

- G(12)V2 ~. ((v~0.(12))) = 0 (34a) 

za(12)((v2~0.(12))) - G(12)V~. ((v2~v{0.(12))) 

- p f dr 3 G(123)((v2 ~ T+(23)(1 + P23) 0.(12))) 

- 1/p((v~z[O.(l'3)*MB(l'3; 12)]))= 0 (34b) 

and 

_pfdr3G(123) I((flmv ~ 3 2 2 ) T+ (23)(1 + P23) 0"(12))) 

(34c) 

In these equations, @.-)) means multiply what is inside the brackets by the 
Maxwellian velocity distribution functions for all the particles involved, and 
then integrate over all the velocities. In order to get Eq. (4a), we used the 
relation 

~ 0 . ( 1 ' 3 ) * M 8 ( 1 ' 3 ; 1 2 ) ~ = 0  

which arises from the alternative expression for M( l ' 3 ;  12), given by 

M( l '3 ;  i 2 ) =  --({[z -- QiS+]-IQif+B(I'3)} QiSB(12)) (35) 
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and from the fact that f d~zQifB(12)= 0, from the definition of Q. We 
now integrate Eq. (34b) over the volume V between concentric spheres of 
radius a~ and (a~ + ~). The only term that is different from the equation 
studied in I is the memory term. To deal with this, we first note the result 
that in the Brownian limit, 

QiS B(12)=Q I ~_,~ T (ij)B(12)l (36a) 
i > j > l  

The reason for this is that Q projects out all purely two-body terms, so that 
there are no terms involving free streaming terms or binary collision 
operators involving the tagged particle. For clarity we have here returned to 
the overbar convention for field variables. If we now multiply Eq. (36a) 
though by V2 and integrate over ~2, we obtain the result that 

~ dre2~2QiS_B(i2)= Q ~, T (ij) ~ 6(~2-fl,,,)vk 
i > j > l  k > l  

= Q ~ �89 - r~,) - c5(~12 - rlj)] (36b) 
i > j >  1 

where we have used T(ij)= T(ji). If we now integrate this over the 
volume V, we see that the result is only nonzero if one of the particles out of 
i and j is inside the volume and the other one outside. As, however, the 
T (/j) operator requires that these particles be in contact, it is clear that the 
whole of the integral comes from values of Ir121 very close to a~ + ~. These 
results therefore show that the whole of the integral of the memory term in 
Eq. (34b) comes from 1~21 ~a~  +~. But, from the definition of ~, 0(12)-=- 
0n(12 ) out there, and the memory function simply describes the pure fluid 
dynamics--that is, Mn can be replaced by MB,oo. It is also important for this 
argument that the pure fluid memory function also gives no contributions to 
the integral over V unless Iraqi ~ a + ~, so no totally spurious contributions 
arise from the interior region when M 4: Moo. By using these facts, the results 
already found in I, and Eqs. (30), (33c), and (33d), we find that we may 
rewrite Eq. (23a) in the form 

kB Tp 
( dr - ~)Y'~ f~(r) + (1 + b e) ~( r )  zC(z) + 6(Ir I - a~ �9 

m 1 

I pm Y pm 

where, as discussed in I, this form may directly be related to the surface 
integral of the hydrodynamic stress tensor. In this equation, ? is a unit 
vector. 
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Finally, we must attempt to transfer the boundary condition upon (12) 
to the surface of a sphere of radius (a 1 + ~). The same methods used in I 
may be used to do this, except that the arguments outlined after Eq. (36a) 
are required to deal with the memory terms. Thus, by taking scalar 
productions of Eq. (34a) and (34c) with PI2,  and Eq. (34b) with (1 - -  r12F12), 
integrating over the volume V, and then making use of Eq. (26c), we obtain 
the slip hydrodynamic boundary conditions, given by 

: .  fv(r ) �9 : = (tim) ~/2 C(z)/3 (38a) 

[P~(:,~:~- (~,~) + :~(:,~:~- ~ ) ]  V~f~(r) = 0 (38b) 

and 

: .  vf (r) = 0 (38c) 

all for [ r l : a l - I - ~ .  The assumptions made here were that z was 
O(1/al(/3m)~/2), and that 0(12) did not behave too strangely for Irlal < 
a~ + ~--that is, that the average values of certain moments of 0(12) inside 
the boundary layer were not of O(aa/~ ) times their values just outside. Thus 
for small z, and also with the above assumption concerning the mgnitude of 
0(12) inside the boundary layer, we have reduced the problem of finding 
C(z) to that of solving the hydrodynamic equations Eqs, (29a)-(29c) subject 
to the slip boundary conditions given by Eqs. (38a)-(28c). This is equivalent 
to saying that the VCF of the Brownian particle shows Stokes-Einstein 
behavior. For completeness, for z = 0 it is straightforward to solve these 
equations, which leads to the Stokes-Einstein result, 

D = k B T/4nrla 1 (39) 

where, because ~/a I ~ 1, we have replaced (a 1 + ~) by ct 1. 
In conclusion, we have indicated in this section how one may obtain the 

long time tail of the VCF and the VCF in the Brownian particle limit for a 
particle moving in a fluid of hard spheres of arbitrary density. The methods 
used have essentially been methods based upon kinetic theory, and they have 
required that all the interactions be hard-sphere interactions. Although the 
entire point of this paper is to carry out the indicated derivations with a 
maximum of simplicity and a minimum of assumptions, our results still 
cannot be called "proofs." The tail calculation requires that M contribute no 
zl/Z term, which is very nearly nearly certain, as discussed in the Appendix, 
but can be questioned. If we just define D in terms of C(z = 0), then our 
arguments about the size of z in the Stokes-Einstein calculation of D are 
unnecessary. We still require that the fluid fields in the boundary layer do 
not differ too drastically from their hydrodynamic forms--again, highly 
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plausible but not certain. One might even question whether 0 =  0n for 
Ir~21 ~>a~ even though this is a standard assumption. So, our derivations 
could be wrong. The facts needed to disprove them, however, would be 
surprising indeed. 

3. THE LONG TIME TAIL AND STOKES-EINSTEIN RELATION 
FOR CONTINUOUS POTENTIALS OF INTERACTION 

In the previous section, we first wrote down a kinetic equation, and then 
obtained both the long time tail of the VCF and the Brownian particle 
behavior by means of a hydrodynamic analysis. In this section, where we are 
considering a system of particles interacting via a continuous potential, we 
use a more direct approach and directly couple the tagged particle's motion 
to the hydrodynamic modes of the surrounding fluid. Thus, whereas the 
previous section used a kinetic theory approach, the approach in this section 
will be more closely akin to the mode-coupling methods used by Keyes and 
Oppenheim (21) and Masters and Madden. (22) The main difference will be that 
much of the following analysis will be conducted in real space instead of in k 
space, as was also done by Cukier et al. (s) in their analysis of Brownian 
particle motion is a dilute gas of hard spheres. 

By using Mori's generalized Langevin equation, (14) we may express 
C(z) in the form 

C(z) - 3ks T/m1 (40a) 
z + v(z)  

where v(z), the friction coefficient, is given by 

v(z) = (3mlk  B T ) - I ( {  [z  - -  Q i i S ] - ' V l }  �9 F1) (40b) 

where F 1 is the force exerted upon the tagged particle, i S  is the Liouville 
operator, Q1 is the Mori projection operator that projects a variable 
orthogonal to v~, and we are working in three dimensions. In order to obtain 
the long time behavior of the VCF of the Stokes-Einstein relation, we must 
couple F1 to the conserved variables of the fluid. Thus we introduce the 
following variables, describing the local fluctuations of the fluid's number 
density, momentum density, and energy density at a given distance away 
from the tagged particle: 

a ,(r)  = ~ ~(r -- r,t ) -- pG(r) (41a) 
t '>l  

av(r ) = ~ v i J(r  - -  rli ) (41b) 
i>1 
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and 

a~(r)=i~>l [2mv~+l ~ u(ij)+ul(li)l~(r-rli ) (41C) 
�9 j * i  

j > l  

In Eq.(41c), u(ij)=u(rij) and ul(li)=ul(rl~ ), are the potentials of 
interaction between particles i and j and the tagged particle, respectively. In 
the subsequent analysis we take these potentials to be short ranged, central, 
and continuous, with a harshly repulsive potential wall as the particles get 
very close. Furthermore we take these potentials to be finite (except possibly 
at Ir/:] = 0), so there is a finite probability of finding the particles at any 
distance apart. Thus, unlike the hard spheres in Section 2, Irl may take on all 
possible values in Eqs. (41a)-(41c). These variables are very simply related 
to the variables used in previous mode-coupling calculations. (~s'21'22) Thus if 
Eqs. (41a)-(41c) are Fourier transformed, we end up with bilinear products 
of a Fourier component of the tagged particle number density with a Fourier 
component of the density of a fluid conserved variable. It is clearly 
completely equivalent to work with the variables defined above, for all values 
of lrl, or to work with all the Fourier components of these variables, but we 
make the former choice here because the physical content of many of the 
later transformations are then clearer. For the subsequent analysis, it proves 
convenient to work with a variable called ar(r ) rather than a,(r), where ar(r ) 
is a fluctuating quantity [as are a~(r) and a~(r)], and is orthogonal to a,(r ' )  
for all values of r'. We call the variable ar(r ) because it is closely related to 
local temperature fluctuations in the fluid. It is given by 

ar(r ) = a~(r) - (a~(r)) - - f  dr '  dr"(a~(r)an(r '))A n-nl(r ', r") a~(r") (42) 

where the spatial integrals are over all space and A ~,t(r', r") is the inverse to 
(a,(r) an(r')) so that 

S dr'(an(r) an(r')) A 2"t(r" r") =- ~(r - r") (43) 

We note in passing that unlike a,(r), ar(r ) contains no term involving the 
potential energy of interaction between a fluid particle and the tagged 
particle. This is because such a term is given by f dr ul(r ) a,(r), and hence is 
projected out in Eq. (2). 

We now analyze v(z) using the Mori theory, (14) taking a,(r), a~(r) and 
ar(r ) as variables for all values of r. Firstly F~ is given exactly as an integral 
over an(r), so that 

F 1 = -- f dr Vul(r ) a,(r) (44a) 
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from which the useful relation 

(F 1 a,(r))  = pk~ TVG(r) 

may be derived. Using Eq. (44a), we have 

(44b) 

v(z) = (3mlk B T ) - ' f  dr dr ' (F ian( r ) )  �9 RR,,(r ,  r ' ) ( F , a , ( r ' ) )  (45) 

where RR,n(r, r ' )  is given by 

f dr '  RR~o(r, r ' )RRLI ( r  ', r ' )  = c~ ,c~(r - r") (46a) 

and RRi,}(r', r ' )  is given by 

RR ;~I(r ', r ' )  = z(aB(r' ) a , ( r ' ) )  - (QiSa~(r' ) a./(r" ) ) 

+ ( { [ z - Q i f ] - l Q i f a ~ ( r ' ) }  Qifa~(r")) (46b) 

In these equations the Greek suffices take on the labels n, v, and T, and 
summation convention is used. Furthermore a repeated suffix also implies a 
scalar product when the suffix takes on the label v. The Mori projection 
operator Q projects a dynamical variable orthogonal to vl and also to a~(r) 
for all values of a and r. 

We shall now consider the long time behavior of the VCF, which we 
obtain from the small z form of v(z). We use the same notation as in 
Section 2, where a superscript of zero or one indicates the z = 0 limit and 
leading small z correction to the quantity, respectively, to obtain from 
Eq. (45) the two equations 

v (~ (3mlkBT) -1 f dr dr ' (F~a, ( r ) )  ~ t ~  . l ~ P i n n  \ , r l ) (Flan(r ' ) )  (47a) 

and 

1 ) (1 )  = (3m,k B T) i f  dr dr'(F,an(r)). RRr r ' ) (F l a , ( r ' ) )  (47b) 

We now must investigate (1) RR~(r, r ). We introduce the far-field form of 
RR~(r ,  r '), which is given by 

We then write 

R 2 ~ ( r , r ' ) =  lim RR2~(r,r') (48) 
[r'[~oo 

RR•(r, r')  = R ~-~(r, r')  - S ~ ( r ,  r ' )  (49) 

822/36/3-4-9 
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where S~a(r, r ')  contains in it all the complexities arising from the behavior 
of the fluid close to the tagged particle. Because u~(r) is a short-ranged 
function, and because we also assume we are not at a critical point, 
R~a(r, r ' )  describes pure fluid and pure tagged particle dynamics, with no 
correlation between them as the processes are taking place far apart. For 
reasons similar to those discussed in the Appendix, we may replace S,o(r, r ')  
by ~.,~(~ r ')  in Eq. (49) because the z dependence of S,~(r, r ')  has no effect 
upon the asymptotic long time tail of the VCF. If we do this, we get the 
result 

RR~(r, r')  = [ 6 ~ 3 ( r  - r2) (0) , (0) , R ( l ) ( r  + R R ~ v ( r ,  r l )  Sy~ ( r l , r2 ) ]  ~ 2 ,r3)  

(0) r r a*pO(0)/. 3u/~(r3 (50) * l a g _ , (  3 '  41 . . . .  v / 3 \ t 4 , r ; )  "~- - - r ; ) ]  

where the asterisks mean integration over repeated variables. Any extra 
terms are of higher order in z. We next introduce the Fourier transform of a 
quantity A(r, r ')  defined by 

A(k, k ')  = f dr dr' eik" 'A(r, r ' )e  ik'" r' (51) 

In this representation R,~(r, r ')  is diagonal, so we write 

k') = 3 + k')  Ro (k) 

We therefore have the result 

( 5 2 )  

( - -  e - i k "  r2D (1)( tr '~eik"  r3 R ~/3(r2, ra )  - -  dk . .  ~ . j  (53) 

Substitution of Eq. (50) into Eq. (47b) followed by use of Eq. (53) yields an 
expression for v (1) involving an integral (1) of R,~(k) over k. As before, the long 
time tail is determined by the small Ik[ portion of this integral, say, for 
[k I < kc, where kc is a cutoff wave vector of the order of an inverse fluid 
correlation length. We now must evaluate (1) R~(k )  for small Ikl. As in 
Section 2 and as discussed in Appendix A, we can ignore the z dependence 
of the dissipative terms in Eq. (46b), where the dissipative terms are given by 
the third term on the right-hand side of the that equation. For small Ikl, it 
can then be readily seen that these dissipative terms contain full fluid and 
tagged particle transport coefficients. The reason for this is that because 
R ~ ( r , r ' )  is the large Ir'l limit of RR~( r , r ' ) ,  the Q operator in the 
dissipative term projects a function of fluid variables orthogonal to the 
conserved variables of the fluid, giving rise to full fluid transport coefficients, 
and projects a function of the tagged particle variables orthogonal to the 
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tagged particle number density, yielding the full tagged particle diffusion 
constant. The asymptotic long time tail arises purely from the R~l~)(k) term, 
which is given for small [k[ by 

f 
( 1 )  _ _  l Ro~ (k) - (1 - •)(flm) / 

1 i ] 
z + k2(rl/pm + D) -- k2(~l/prn + D) (54) 

where 1 is the unit tensor, the caret denotes a unit vector, and we have not 
written out the longitudinal modes, proportional to kk, because they do not 
contribute to the asymptotic long time tail. 

These results give rise to an expression for v r given by 

m ( .  

1~( 1 ) = | dkf l (k) fE(k)[1 - ~] 
3(k~ T)2ml(270 3 ~rkl <k~ 

l 1 1 I • -- (55a) 
z + k2(q/pm + D) k2Ql/pm + D) 

where 

f~(k) = (V~ an(r)) *RR(~ - r~)*S~(rl,  rz)*e - ik 'a  (55b) 

and 

f2(k ) = e -/k-,3 * ~'(o)r- r4)*RRon(r4, r ' )*(F 1 an(r')) (55c) ~v~3 Qr3, 

As before, the asymptotic long time tail arises from the Ikl ~ 0 limit off l (k)  
and f2(k). These limits are readily evaluated, because we have the results 

co) 64" (F1 an(r1) ) (56a) f dr2 S ~ ( r l '  r2) - m 

and 

co) 6~n (Flan(r4) (56b) f dr3 Sv~ (r3' r4) = m 

which leads to the result that 

f l(0) = (3mlkBT) v (~ 
m 

= --f2(0) (57) 

where we have used Eq. (47a). 
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Finally, in order to obtain the long time tail of the VCF, we return to 
Eq. (40a), which yields 

C . ~ ( z )  = _ 3kB T v ~1~ 
m, [v~~ ~ (58) 

Substitution of Eq. (55a) into this result, followed by use of Eq. (57) and 
then followed by an inverse Laplace transform and the evaluation of the k 
integral leads us back to the same expression for the long time tail as given 
in Eq. (25), except that the transport coefficients here refer to a system 
interacting via continuous potentials. 

This result came about through a coupling between the local density 
fluctuations of the fluid, that directly cause the force on the tagged particle, 
and local fluctuations of the shear modes of the fluid. In a pure, isotropic 
fluid this coupling cannot occur because of symmetry considerations, but in 
the region close to the tagged particle this symmetry is no longer present and 
the coupling is allowed. This point has previously been discussed by 
Michaels and Oppenheim. ~25) 

Just as in Section 2, we obtain very simple expressions for the tails 
because the potentially complicated quantities in v ~1~ are determined by the 
equation for v ~~ For hard spheres, a precondition for the simplification was 
that ~0 could be replaced by T in evaluating f ;  the analogous requirement 
here is that all contributions of S o to f involve (Flan) [Eqs. (56)]. If any 
part of S o other than the (Flan) terms entered f, we would be left with parts 
of the tail which could not be evaluated from Eq. (47a). Thus, a general 
argument for the pervasiveness of (F 1 an) in f is desirable; fortunately, this is 
easily given. S o is that part of the hydrodynamic operator (in r, r ')  confined 
to the boundary layer. The hydrodynamic equations describe both tagged 
particle-fluid and fluid-fluid interactions. The latter are of the usual form 
and, even in the boundary layer, contain at least one Vr, r, ; they consequently 
can contribute to f (k)  to O(k) at best, giving tails weaker than t -3/2. A 
nonzero f (0)  can only come from the "external force" (tagged-fluid) terms in 
the equations, and these appear as (Flan) only. 

Note that according to this argument, calculations of the tails in the 
Lorentz gas, where(26)f or k, k ~  0, and the tails decay as t -5/z, should be 
much harder than in fluids. Such is indeed t2v) the case. 

We lastly come to the question of Brownian motion and the Stokes- 
Einstein relation. Firstly it is convenient to introduce the functions f~(r) 
defined by 

f~(r) = (F ,a , ( r ' ) )  *RRn~(r', r) (59) 

Use of this definition and Eq. (44) leads to the result that 

v(z) = 3 +  1 f dr f . ( r) .  VG(r) (60) 
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and use of Eq. (45a) yields the following equations that these functions must 
obey: 

r t , --1 t f~( ) R n ~ ( r , r ) = P k B T V G ( r  )3ib. (61) 

In this Brownian particle limit, RR2~(r',r) is simplified because we may 
ignore the motion of the tagged particle. We shall not give a detailed 
justification of this statement, but in the formalism used here it comes about 
because in the Brownian limit ~I/pm >> D and because the projection operator 
Q1 in Eq. (45b) ensures that one is always studying the decay of the tagged 
particle velocity multiplied by a fluctuation in a fluid property, and so the 
product fluctuation decays in a microscopic as opposed to a Brownian 
particle time scale. (2z) 

For large values of I r I, it is straightforward to write out Eq. (61) 
explicitly by conducting a gradient expansion. This expansion will be valid 
because for large Ir] the functions f , ( r )  vary on a Brownian particle length 
scale. As in Section 2, however, this expansion will not work for smaller 
values of I r], because of the rapidly varying fluid properties close to the 
Brownian particle. Again our strategy will therefore be to reexpress Eq. (60) 
in terms of the far fields, and attempt, via Eqs. (61), to obtain boundary 
conditions on these far fields. 

Let us, for definiteness, let a t be that distance at which the repulsive 
wall of ul(r ) passes through zero. This gives us a measure of where the 
repulsive core starts. We next introduce the microscopic length, ~, so that for 
Irl/> a 1 + ~ the fluid does not feel any disruption due to the presence of the 
tagged particle. Hence G(a~ + ~ ) =  1, for instance. Thus for Irl ~>a l+~ ,  
Eq. (61) yields the three coupled equations: 

and 

pk B T zs(O) ~(r )  + V ~ ( r )  = 0 (62a) 
m 

z ~ ( r )  + V~f~(r) + [( 7 _ 1)kB T 2 ] 1/2 

1 [ ~ / V 2 f ~ ( t ) + @ B + 3 ) V ~ V Y ~ Y ( r ) ] = 0  (62b) 
prn 

[[-(Ys(0) C ~ -  1)kB ] 1/2 rn2 zmC~Wr(r ) + V a ~ ( r )  - V2~(r) --- 0 (62c) 
P 

where Co is the specific heat at constant volume, y is the ratio of the specific 
heats, the Greek superscripts here denote Cartesian components, and the 
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other symbols are the same as those given under Eq. (32c). In order to get 
these equations, we needed the value of several, standard correlation 
functions, which are given, for example, by Hansen and MacDonald. (28) As 
in I, we may relate Eqs. (62a)-(62c) to the normal linearized hydrodynamic 
equations by making a change of variable and by noting the results 

and 

OP)T-kBT~p s(O) (63a) 

c~P )2 = p2C~ (Y _ 1) c~P ] (63b) 
c3T l o r c~p ] r 

where P is the pressure. 
We now consider the problem of obtaining an expression for v(z) in 

terms of these far-field variables. To do this we consider Eq. (61), setting 
fl = v. We then integrate this equation over all the space inside a sphere of 
radius (al + ~), which we denote as the volume V. We thus get the result 

: dr{f , ( r ' )*RR-i  , ,v ( r ,  r) + fv(r') *RR wl(r ', r) 
v 

+ fr(r ') *RRr~(r',  r)} = 0 (64) 

where we have explicitly written out the sum implied in Eq. (61). We now 
examine each term in turn. In the Brownian particle limit, 

RR ~vl(r ', r) - PkB~T Vr,fi(r - r ')  G(r') (65) 
m 

there being no dissipative contribution. The next term, RRwl(r  ', r) is more 
complicated, because this time there is a dissipative term. We can make 
progress, though, by using similar arguments to those used in Section 2, after 
Eq. (36b). Thus, we have 

QiSa~(r) = Q ~ V.  V[V i ~ ( r  - -  rig ) q- ~ -  fij J(r -- rli ) 
i > 1  

j > l  

l 1 N~ fu[~(r r ~ i ) - - ~ ( r  rlj)] I : Q  ~2 V . v i v  i ~ ( r - r l i  ) + - ~ . ~  -- -- 
i>~ 2m j~e 

j>l (66) 

where fu is the force on particle i due to particle j, and we have used 
f u = - f j i .  Because Q projects a variable orthogonal to an(r'), Eq. (66) 
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contains no term involving the force exerted on a fluid particle by the tagged 
particle. Thus when Eq. (66) is integrated over the volume V, the whole of 
the integral arises from values of Irl close to al + r because fij is taken to be 
a short-ranged force. Hence the integral over the volume V of the second 
term in Eq. (64) is also confined to the surface. An equivalent statement is 
that, in the absence of explicit "external force" terms, the right-hand side of 
the hydrodynamic equations look like V.  J, and integrals over V can be 
converted to outer surface integrals, provided z is small enough so that the 
integral over the Euler term proportional to z in Eq. (61) is negligible. 
However, for [rl--~a~ + ~, we can evaluate f,(r ')*RRvvl(r ', r) by using the 
gradient expansion used previously, and we can therefore express this term 
as a surface integral of the far-field function f~(r). Lastly, the third term in 
Eq. (64) involves both Euler and dissipative contributions. An argument 
similar to that given above shows that the dissipative term makes a negligible 
contribution in this Brownian particle limit, that is, its contribution to the 
drag is O(~/al) times the leading terms. The Euler term is given by 

RR f~(r', r) = - (  Q , iSar(r' ) av(r)) 

: (ar(r ' )  iYav(r)) 
(Euler) 

(67) 

The quantity i r a , ( r )  is given by 

iSa~ ( r )=  ~ 1 V . v ; v i g ( r - r , i ) + - ~ g ( r - r l t )  
i>1 

+ 5 -  m f , [ a ( r  - - -  - -  r , , ) ]  
j ~ i  
j > l  

(68) 

The second term is a linear function of the variable an(r'), and hence by 
definition is orthogonal to ar(r ). Thus the Euler term simply arises from the 
correlation function of ar(r ) with the first and third terms of Eq. (68), and, 
for the same reasons discussed above, the integral over the volume V comes 
simply from values of Irl close to a I + ~, where the Euler term may be 
evaluated by means of a gradient expansion. Combining together these 
results, we obtain from Eqs. (60) and (64) the result that 

v(z)= 3@~fdr  O ( ] r [ - a l - ~ ) I P .  fn(r)+ { ( 7 ~  1)k, T2] 1/2 
s(O)C  J 

(~IB -prn2/3 r/) :~ V,f~'(t) - 2r/pro :'~ :~ : 'V"  f~Y(r) I (69) 
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a result very closely related to the surface integral of the hydrodynamic 
stress tensor. 

It now remains to obtain boundary conditions upon these far-field 
functions. Firstly, let us write out Eq. (61) setting fl = n. We obtain 

~(r ' )*RRn ,  l (r ' , r)+ PkBT V~[G(r)f~t3(r)] =pksTV~G(r)  (70) 
m 

We then take the scalar product of this equation with P and integrate over 
the volume V. By using the fact that G(r) is negligibly small for Irl < al ,  and 
by requiring that in the Brownian limit z ~ O(a~(/3m)1/2) -~, we obtain from 
Eq. (70) the boundary condition 

? , .  f~B(r) �9 ?~ = m, Irl = a~ + ~ (71) 

where we have neglected terms of order (r or smaller. To get these 
conditions we required that ]fv(r)] does not grow enormously for al < Ir] < 
al + ~. That is we require that the ratio of Ifv(r)l to the hydrodynamic, far- 
field value of If~(r)[ is much less than a l/~. Equation (71) is the equivalent of 
the hydrodynamic normal velocity boundary condition. The other boundary 
conditions may be obtained in a similar way by setting fl = v and fl = T in 
Eq. (61), and integrating over the volume 17. This procedure, combined with 
similar assumptions to those made above, shows that 

{P~[6~r- P~P~I + Py[6~- PsF~I }V J ) r ( r )  = 0, Irl = a I + ~ (72a) 

and 

P. Vfr(r) = 0 , Irl = a  1 -}-~ (72b) 

the equivalents of the zero tangential stress and zero temperature gradient 
hydrodynamic slip boundary conditions. 

A combination of Eqs. (62a)-(62c), (69), (71), and (72a), (72b) allows 
us to solve for the VCF of the Brownian particle interacting with the fluid 
particles by a continuous short ranged potential. For z = 0, these equations 
are readily solved to yield the slip form of the Stokes-Einstein results, given 
by Eq. (38). 

Finally, we would like to make some brief comments relating to the 
results given in this section to previous work. Firstly, although the methods 
used are somewhat akin to mode-coupling methods, ~ls) we nowhere need to 
invoke concepts such as "bare" transport coefficients. One of the advantages 
of working in real as opposed to k space is that it is transparently clear that 
both the long time behavior of the VCF and the Stokes-Einstein relation 
arise from hydrodynamic fluid fields far from the tagged particle, and 
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therefore that the full transport coefficients come in naturally to describe the 
behavior of these far fields. Furthermore the Gaussian approximation, 
commonly made in mode-coupling theories, may readily be shown in the 
example of the Stokes-Einstein relation to be equivalent to solving Eqs. 
(62a)-(62e) for all values of ]r[, and then substituting the solution into 
Eq. (60). This approximation clearly does not take into account the rapid 
variation of the fluid properties close to the tagged particle, which are 
essential to obtain the correct boundary conditions. We would also like to 
comment that the method used here of analyzing the problem in terms of the 
far fields and boundary conditions at the edge of the boundary layer, is 
similar in many ways to the approach used by Ronis et a L  (29) in their work 
on hydrodynamic slip boundary conditions. 

4. DISCUSSION 

In the preceding sections we have indicated how one way investigate the 
long time tail of the VCF and the Stokes-Einstein limit both by kinetic 
theory techniques and by methods based upon generalized hydrodynamics. 
Although the results obtained were not new, we do hope that we have 
presented a direct and physically intuitive approach, while at the same time 
being fairly careful. We also hope that this work will also be of some help in 
an attempt to formulate a good, approximate, high-density theory of tagged 
particle motion. 

Before finishing, we would like to mention that the methods described 
here can also be applied to correlation functions of collective variables. Thus 
within the kinetic theory approach, one may for instance start with the 
variables Z i  6(v - vi) and Y~i,j cS(v - vi) 6(v' - v j ) [ [ O ( r 1 2  - r / j )  -pg(12) ] ,  
and, using the same methods described in I and Section 2, investigate for 
example the long time tail of the stress autocorrelation function. Similarly 
the methods of Section 3 may be used to investigate the same thing for a 
system interacting via continuous potentials. In both cases the result for the 
long time tail is found to agree with earlier mode-coupling results ~17) and the 
calculation of van Beijeren and Ernst. (2~ The reason for the discrepancy 
between these results and the results of computer simulation ~3~ remains 
unclear, though the self-consistent mode-coupling approach of 
Leutheusser (31) does predict on enhancement of the long time tail coefficient 
over these previous theoretical results. 

APPENDIX A 

In this appendix, we wish to argue that the z dependence of the memory 
function M( l ' 3 ;  12) in Eq. (3) is unimportant as regards the long time 
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behavior of the VCF. We similarly would like to show that the z dependence 
of the dissipative terms in Eq. (45b) is again irrelevant. Before proceeding 
with the ensuing analysis, we note that this problem arises in "normal" 
mode-coupling approximation methods. In these methods, the small-z form 
of C(z) comes from an integral of the form 

dk I 1 CO)(z)~ z +k2[q(k,z)/pm+D(k,z) 

1 
- I ( A 1 )  

k 2 [r/(k, O)/pm + D(k, 0)] } 

where r/(k, z) and D(k, z) are the k- and z-dependent values of the shear 
viscosity and the diffusion constant. We therefore may rewrite Eq. (1) in the 
form 

-[(t/(k, z) - ~(k, O))/pm + D(k, z) - D(k, 0)] 
C~l)(z) ( 

OC dk 
Jl k l < kc k 2 [t/(k, O)/pm + D(k, 0 ) ]  2 

t 1 1 I +f Ikl<kc z+k2ltl(k,O)/pm+D(k,O)] k2ltl(k,O)/pm+D(k,O) dk 
(A2) 

The second term gives rise to the familiar result for the long time tail, written 
out in Eq. (25). The first term gives no contribution to the longtime tail. This 
is because, as shown by Keyes and Oppenheim, (2~) the inverse Laplace 
transforms of r/(k, z) and D(k,z) are both of the form t-3/2e -rk2t at long 
time, where F is a constant. Carrying out the k integral in the first term 
shows that this term dies away as t -z at long times, and hence is negligible 
compared to the second term. Thus, the z dependence of the transport coef- 
ficients, equivalent to the z dependence of the memory function, seems to be 
unimportant. 

In order to argue within our formalism, we introduce the three-particle 
function C(123), given by 

C(123)=Q I~N' X? (~(~rl--Vl)(~(v2--v1)(~(v3--vj)f~(rl2--rli)~(rl3--rlj) I 
i>1  j < l  

j*i (A3) 

where Q is defined after Eq.(4). We them may write M(1'3;12)  
schematically in the form 

/N  

M = ((if+ B) C) *RRcc *(C(if+ B)) (A4) 
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where for brevity we have suppressed the arguments of the functions, and 
& 1 R R ~  is given by 

/ N  1 RRG = z(CC) -- ((iS+ C)C)  - ( l / f +  [z - Q'i2~ -1Q ' i f  + C}C) (A5) 

where Q' projects a variable orthogonal to the variables A, B, and C. 
Following the arguments used in the text, we obtain M (~) from a 
hydrodynamic analysis of the far field form of RRcc, that is, when the field 
points r~, r2, and r 3 are all far apart. Nonhydrodynamic modes are expected 
to decay away exponentially on the time scale of a typical molecular 
correlation time. If we then ignore the z dependence of the memory function 
in (A5) we find, schematically, that the dominant contribution of M ~1) 
toward C~)(z) is given by 

C(I)(z) oc dk dk'  1 1 1 
[kl,[kl<kc Z + k2F+ [k + k'  [2/-, - k2F + [k + k'  t ~-7 k-~- 

(A6) 

where F and F'  are constants. Upon inverse Laplace transforming this we 
find, as suggested by Eq. (A2), that it gives rise to a t -2 tail, but does not 
contribute to the asymptotic t -3/2 tail. The only problem remaining then is 
the neglect of the z dependence in the memory term of Eq. (A5). This effect 
may, in turn, be investigated by introducing four-particle variables, and 
conducting the hydrodynamic analysis, this time neglecting the z dependence 
of the four-particle memory function, and so on. It would seem that trun- 
cating this procedure at any finite level would lead to results that do not 
change the asymptotic long time tail of the VCF. Self-consistent calculations 
along the lines conducted by Keyes and Oppenheim (21) also strongly suggest 
that these memory effects do not contribute. 

Lastly the arguments used here are essentially applicable to the neglect 
of the z dependence of the dissipative terms in Section 3, Eq. (45b). In this 
case, though, this dependence may be studied by coupling the bilinear 
variables to trilinear variables and conducting a hydrodynamic analysis. 
Again the results indicate that one can safely set z = 0 in the memory terms 
so far as the long time tail of the VCF is concerned. We would like to stress, 
though, that the foregoing analysis is only appropiate for a dimensionality of 
three or more. In two dimensions the z dependence of the memory functions 
does contribute to the long-time tail, and it is a more subtle calculation to 
extract its functional form and obtain neat expressions for the coefficients. 
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APPENDIX B 

The relation between M and A]t which follows from Eq. (6b) is 

W(1 '3) 0(1'3) "37/(1 '3; 12) = 0(1 '3) *M(1 '3; 12) (B1) 

Referring to Eq. (4) for M, the important quantity here is Qi.~+B(I'3), and 

a i f + B ( l ' 3 )  = Q ~ ( T + ( l j ) +  T+ (/j)) ~ 6 ( ~ - ~ 1 )  6 (~3 -  v,.) 
jvei i > 1  
>1  

X (6(~1,3 -- r,i) -- pG(l'3)) (B2) 

Now the T's give the same results when acting on 0 or WO, so 37/= M. It 
follows that 

v3"37/(1'3; 12)=  v3*M(l '3;  12) 

= ( iy+[z-QiS+]-1Qi~7,~>l  T + ( / j ) v ; ( l - - p f  drG(r) ) )  (B3) 

j > l  

The essential feature of Eq. (B3) is the absence of the T+(lj)  terms--those 
involving the interaction of the tagged particle and the bath. The reason for 
this is that Q removes all quantities which can be expressed in terms of the 
tagged-bath pair phase-space distribution function, and the T+(lj)  terms are 
of this type. Then. Y~ T+(U)v~=0, being, in the absence of any l's in the 
arguments of the T's, the statement of conservation of momentum in the 
fluid unperturbed by the tagged particle, and Eq. (24) follows. Identical 
arguments show that v 3 */~(1'3; 12)=  0. 
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